The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative

نویسندگان

چکیده

Given an injective closed linear operator A defined in a Banach space X, and writing CFDtα the Caputo–Fabrizio fractional derivative of order α∈(0,1), we show that unique solution abstract Cauchy problem (∗)CFDtαu(t)=Au(t)+f(t),t≥0, where f is continuously differentiable, given by first u′(t)=Bαu(t)+Fα(t),t≥0;u(0)=−A−1f(0), family bounded operators Bα constitutes Yosida approximation Fα(t)→f(t) as α→1. Moreover, if 11−α∈ρ(A) spectrum contained outside disk center radius equal to 12(1−α) then (∗) converges zero t→∞, norm provided f′ have exponential decay. Finally, assuming Lipchitz-type condition on f=f(t,x) (and its time-derivative) depends α, prove existence uniqueness mild solutions for respective semilinear problem, all initial conditions set S:={x∈D(A):x=A−1f(0,x)}.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Solvability of an Inverse Fractional Abstract Cauchy Problem

This note is devoted to study an inverse Cauchy problem in a Hilbert space H for fractional abstract differential equations of the form; ), ( ) ( ) ( = ) ( t g t f t u A dt t u d    with the initial condition H u u = (0) 0 and the overdetermination condition: ), ( = ) ), ( ( t w v t u where (.,.) is the inner product in H , f is a real unknown function w is a given real function, 0 u , v ar...

متن کامل

A singular abstract cauchy problem.

In this note a singular abstract Cauchy problem is considered. A solution is obtained for this problem in terms of a regular abstract Cauchy problem. As an application we obtain a new solution of the initial value problem for a class of singular partial differential equations.

متن کامل

Bounds on the solution of a Cauchy-type problem involving a weighted sequential fractional derivative

In this paper we establish some bounds for the solution of a Cauchy-type problem for a class of fractional differential equations with a weighted sequential fractional derivative. The bounds are based on a Bihari-type inequality and a bound on Gauss hypergeometric function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10193540